Quantum advantage via non-local games

Ion Nechita (CNRS, LPT Toulouse)

Séminaire Informatique Quantique IRIT — October 16th 2025

Quantum advantage

Computational advantage of quantum computers:

- Sampling from random circuits [A+19]
- Boson sampling [ZDQ⁺21]
- Quantum error correction below the threshold [A+25]

We focus on a different type of advantage, emphasizing non-locality and entanglement.

It is based on ideas on Bell that have been made precise by Clauser \P – Horne – Shimony – Holt (CHSH). The theoretical proposal has been verified experimentally by Aspect \P .

Rules of the CHSH game

Classical vs Quantum strategies

Winning probability:

$$\mathbb{P}(win) = \frac{1}{4} \sum_{x,y} \sum_{a,b} \mathbb{P}(a,b|x,y) \mathbb{1}_{a+b=xy}$$

$$\uparrow \text{strategy}$$

Deterministic strategies: Alice and Bob compute their answer as a function of their question

$$\mathbb{P}(a, b|x, y) = \mathbb{1}_{a=f_A(x)} \mathbb{1}_{b=f_B(y)}.$$

Classical (or random) strategies: Alice and Bob have access to shared randomness that can be set up before the game starts

$$\mathbb{P}(a,b|x,y) = \sum_{\lambda} p_{\lambda} \mathbb{P}_{A}(a|x,\lambda) \mathbb{P}_{B}(b|y,\lambda).$$

Quantum strategies: Alice and Bob share an entangled state

$$\mathbb{P}(a,b|x,y) = \operatorname{Tr}\left[\underset{\substack{\rho_{AB} \\ \rho_{CA} \text{ measurements}}}{\operatorname{Pr}}\right].$$

,

Classical vs Quantum winning probability

CHSH inequality [CHSH69]; Bell's theorem [Bel64]

The best classical strategy wins the game with probability 3/4.

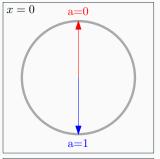
Attained for the (deterministic) strategy $\mathbb{P}(a, b|x, y) = \mathbb{1}_{a=0}\mathbb{1}_{b=0}$.

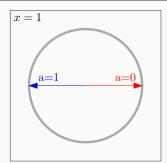
Quantum mechanics does better!

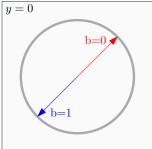
There exists a quantum strategy that wins with probability \approx 85%.

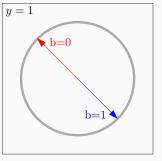
- Alice and Bob prepare, before the game starts, a maximally entangled state $\rho_{AB} = |\Psi^{+}\rangle\langle\Psi^{+}|$, where $|\Psi^{+}\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.
- Alice measures the observables $E_0 = Z$ and $E_1 = X$.
- Bob measures the observables $F_0 = (Z + X)/\sqrt{2}$ and $F_1 = (Z X)/\sqrt{2}$.
- The probability of winning is $\cos^2(\pi/8) = 1/2 + 1/(2\sqrt{2}) \approx 85\%$.

Choice of measurements









Is entanglement necessary?

If Alice and Bob share a separable (i.e. non-entangled) state

$$\rho_{AB} = \sum_{\lambda} \begin{array}{c} \begin{array}{c} \text{probabilities} \\ \\ p_{\lambda} \\ \\ \\ \end{array} \begin{array}{c} \alpha_{\lambda} \\ \\ \end{array} \begin{array}{c} \beta_{\lambda} \end{array}$$

their strategy can be written as:

$$\mathbb{P}(a,b|x,y) = \operatorname{Tr}[\rho_{AB}E_{a|x} \otimes F_{b|y}] = \sum_{\lambda} p_{\lambda} \underbrace{\operatorname{Tr}[\alpha_{\lambda}E_{a|x}]}_{\mathbb{P}_{A}(a|x,\lambda)} \underbrace{\operatorname{Tr}[\beta_{\lambda}F_{b|y}]}_{\mathbb{P}_{B}(b|y,\lambda)}.$$

Hence, separable states cannot yield a quantum advantage.

A However, not all entangled states can provide an advantage.

The Werner state [HQV+17]

$$\rho_{W} = p | \Psi^{-} \rangle \langle \Psi^{-} | + (1 - p) \frac{1}{4}$$

is entangled and has a local hidden variable model for 1/3 .

Is measurement incompatibility necessary?

Alice has a measurement apparatus $(E_{a|x})_{a=0,1}$ for each question x=0,1 she receives from the referee. Her measurements are called compatible if there exists another measurement $(G_{\lambda})_{\lambda}$ and probabilities $q(a|x,\lambda)$ s.t.

$$\forall a, x \qquad E_{a|x} = \sum_{\lambda} q(a|x, \lambda) \quad G_{\lambda} .$$
 single measurement

In this case, the quantum strategy can be written as

$$\mathbb{P}(a,b|x,y) = \sum_{\lambda} \underbrace{\mathsf{Tr}[\rho_{AB}G_{\lambda} \otimes I_{B}]}_{\rho_{\lambda}} \underbrace{\frac{q(a|x,\lambda)}{\mathbb{P}_{A}(a|x,\lambda)}}_{\mathbb{P}_{A}(a|x,\lambda)} \underbrace{\mathsf{Tr}\left[\frac{\mathsf{Tr}_{A}[\rho_{AB}G_{\lambda} \otimes I_{B}]}{\mathsf{Tr}[\rho_{AB}G_{\lambda} \otimes I_{B}]}F_{b|y}\right]}_{\mathbb{P}_{B}(b|y,\lambda)}.$$

Hence, compatible measurements (for one player) cannot yield a quantum advantage.

Quantitatively, the more incompatible Alice's measurements are, the larger the quantum advantage can be [LN22].

Winning with probability one

[Tsierlson's bound] The quantum strategy that achieves $\approx 85\%$ is optimal.

Hence, using quantum mechanics, it is impossible to produce

$$PR(a,b|x,y) = \frac{1}{2}\mathbb{1}_{a+b=xy}$$

which wins the game with probability 1. This correlation corresponds to a resource called a Popescu-Rohrlich box [PR94]. PR boxes do not allow communication between Alice and Bob, hence they do not violate faster-than-light communication.

However, PR boxes (and other post-quantum resources) violate other physical or computational principles that "should" be true.
One example is communication complexity: such resources could allow Alice and Bob to compute locally "complicated functions" [BBC+24] and thus collapse communication complexity.

Is the optimal quantum strategy unique?

Self-testing: achieving the maximum probability (≈ 0.85) is a device-independent certificate that the underlying physical system contains a perfect 2-qubit maximally entangled state and the measurements performed on it are the ideal, optimal settings, regardless of the internal workings or complexity of the devices used [ŠB20].

If the maximal winning probability is achieved using a quantum state ρ_{AB} acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ and measurements E, F, resp. on \mathcal{H}_A , \mathcal{H}_B , then there exist local isometries

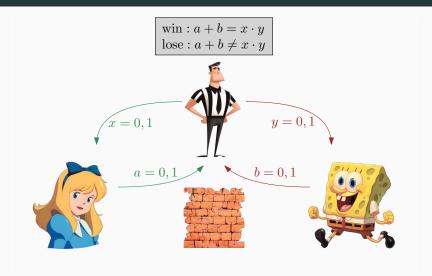
$$V_A: \mathcal{H}_A \to \mathbb{C}^2 \otimes \mathcal{H}_{\mathsf{aux},A} \quad \text{ and } \quad V_B: \mathcal{H}_B \to \mathbb{C}^2 \otimes \mathcal{H}_{\mathsf{aux},B}$$

such that

$$\mathsf{Tr}_{\mathcal{H}_{\mathsf{aux},A}\otimes\mathcal{H}_{\mathsf{aux},B}}\left[(V_A\otimes V_B)
ho_{AB}(V_A\otimes V_B)^*
ight]=|\Psi^+
angle\langle\Psi^+|$$

and the restrictions of the measurements VEV^* , VFV^* to the qubit subspaces are unitarily equivalent to the ones in the strategy we presented. \triangle Robust versions of this theorem exist [GH17].

The take-home slide



$$\mathbb{P}_{\text{classical}}^{\,\text{max}}(\text{win}) = \tfrac{3}{4} \quad \text{ while } \quad \mathbb{P}_{\text{quantum}}^{\,\text{max}}(\text{win}) = \tfrac{1}{2} + \tfrac{1}{2\sqrt{2}} \approx 85\%$$

References

	[A ⁺ 19]	Frank Arute et al. Quantum supremacy using a programmable superconducting processor. <i>Nature</i> , 574:505–510, 2019.	[HQV ⁺ 17]	Sbornik: Mathematics, 208(12):1784, 2017. Flavien Hirsch, Marco Túlio Quintino, Tamás Vértesi, Miguel Navascués, and Nicolas Brunner. Better local hidden variable models for two-qubit werner states and an upper bound on the grothendieck constant $k_{-g}(3)$. Quantum, 1:3, 2017.
	[A ⁺ 25]	Rajeev Acharya et al. Quantum error correction below the surface code threshold. Nature, 638(8052):920–926, 2025.		
	[BBC ⁺ 24]	Pierre Botteron, Anne Broadbent, Reda Chhaibi, Ion Nechita, and Clément Pellegrini. Algebra of nonlocal boxes and the collapse of	[LN22]	Faedi Loulidi and Ion Nechita. Measurement incompatibility versus Bell nonlocality: an approach via tensor norms. PRX Quantum, 3(4):040325, 2022.
		communication complexity. Quantum, 8:1402, 2024.	[PR94]	Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom.
	[Bel64]	Johns S. Bell. On the Einstein Podolsky Rosen paradox. <i>Physics</i> , 1:195–200, 1964.		Foundations of Physics, 24(3):379–385, 1994.
			[ŠB20]	Ivan Šupić and Joseph Bowles. Self-testing of quantum systems: a review.
	[CHSH69]	John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt.	[ZDQ ⁺ 21]	Quantum, 4:337, 2020.
		Proposed experiment to test local hidden-variable theories. Physical review letters, 23(15):880, 1969.		Han-Sen Zhong, Yu-Hao Deng, Jian Qin, Hui Wang, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Dian Wu, Si-Qiu Gong, Hao Su, et al. Phase-programmable gaussian boson sampling using
	[GH17]	William Timothy Gowers and Omid Hatami.		stimulated squeezed light.

Physical review letters, 127(18):180502, 2021.

Inverse and stability theorems for approximate

representations of finite groups.